Определить координаты на местности. Определение координат точек местности (объектов)

Любой объект на местности можно описать с помощью координат точек, принадлежащих этому объекту.

Графический способ

  •  проводятся измерения на местности
  •  на бумаге в масштабе карты наносятся результаты измерений
  •  получается положение точки на карте

Неприменим для построения геодезических сетей из-за своей малой точности.

Аналитический способ

  •  проводятся определенные измерения на местности
  •  по измеренным значениям с помощью формул вычисляются координаты точки

Мы уже упоминали понятие точности. Прежде чем перейти к вопросу о геодезических измерениях, остановимся на нем подробнее.

Точность измерений выражает степень близости результата измерений к действительному значению измеряемой величины. Абсолютно точные измерения невозможны в силу комплекса причин.

Измерения происходят в конкретных условиях, которые, в свою очередь, определяются факторами (внешней среды, объекта измерений, исполнителя, средств измерений).

В процессе работы факторы не сохраняют стабильности, что и приводит к отклонению результата от истинного значения. Это отклонение называют погрешностью измерений.

Если условия измерений остаются, насколько это возможно, постоянными (одно средство измерения, один и тот же исполнитель), то говорят о равноточных измерениях.

Чтобы оценить точность измерений, необходимо классифицировать погрешности по природе их возникновения. Различают три вида погрешностей:

Грубые. Возникают в основном из-за ошибок человека, производящего измерения. Возможны в случае непредвиденного выхода из строя измерительного инструмента. Для исключения грубых погрешностей используют специальную методику измерений (контрольные отсчеты по разным счетным шкалам), специальные правила записи результатов измерений.

Систематические. Связаны с точностью инструментов и состоянием окружающей среды. Имеют явно выраженный закономерный характер, остаются постоянными на протяжении длительного времени или изменяются по определенному закону.

Систематические погрешности стремятся обнаружить и исключить посредством поверки инструментов, т.е. выполнения серии измерений эталонной величины. При обнаружении систематических погрешностей инструмент исправляют (юстировка) или вводят необходимые поправки в результаты измерений.

Случайные. Причинами могут быть остаточные систематические погрешности, несовершенство органов чувств человека, некоторые природные факторы и т.п.

Эти погрешности имеют следующие свойства: их численные значения небольшие по абсолютной величине, появление положительных и отрицательных погрешностей равновероятно, малые по модулю значения встречаются значительно чаще, чем большие, чем больше ряд наблюдений, тем больше сумма погрешностей стремится к нулю.

Если проведены несколько  (n) измерений одной и той же величины a (например, угла). При этом каждый раз получаются немного отличные друг от друга значения ( a1, a2, a3 и т.д.) то:

Среднее арифметическое значение числа

аср = (а1+a2+a3+…+an) / n = ∑an / n

Среднее арифметическое конечного ряда случайных величин есть наиболее вероятное значение измеряемой величины. Это свойство среднего арифметического дает возможность отыскать наиболее точное значение определяемых величин из ряда многократных измерений, содержащих случайные погрешности.

  • Качество измерений устанавливает показатель «разброса» результатов относительно их среднего арифметического.
  • Средняя квадратическая погрешность измерений:
  • M = ± √ ∑∆an2 / (n-1), где ∆an= an – аср

Установлено, что из 1000 равноточных независимых измерений 68 % случайных погрешностей не превышают значений M, 95,4 % – 2М, 99,7 % – 3М, лишь 0,3 % больше. Эта закономерность дает возможность установить предельно допустимое значение случайных погрешностей, например, для геодезических измерений 2,5 М.

Результатом влияния погрешностей на точность измерений являются невязки, т.е. расхождение теоретически вычисленных значений с измеренными. Невязки так же, как и погрешности, присутствуют при любом виде геодезических работ. Для каждого вида работ и класса точности невязкине должны превышать величин, установленных стандартами.

Выделяют несколько способов определения плановых координат. Основные – геодезические засечки, полигонометрия (геодезические ходы), триангуляция. Начнем с последнего.

Триангуляция – способ передачи плановых координат, основанный на измерении внутренних углов треугольника. Для вычисления координат точек в сети триангуляции необходимо иметь исходные данные: координаты двух точек в треугольнике.

  1. Определить координаты на местности. Определение координат точек местности (объектов)
  2. Из прямоугольного треугольника:
  3. S1-2=(∆Y1-2)2+(∆X1-2)2
  4. Α1-2= arctg (∆Y1-2/ ∆X1-2)
  5. Обратная геодезическая задача
  6. Α1-3= Α1-2 – β1
  7. По теореме синусов:
  8. S1-3/sinβ1= S1-2/sinβ3
  9. S1-3= sinβ1*S1-2/sinβ3
  10. Из прямоугольного треугольника:
  11. ∆X1-3= S1-3*cos Α1-3
  12. ∆Y1-3= S1-3*sin Α1-3
  13. Прямая геодезическая задача

Для измерения горизонтальных и вертикальных углов на местности служат теодолиты. Точность теодолитов определяется средней квадратической погрешностью измерения горизонтального угла в лабораторных условиях. Значения погрешности указывает в маркировке инструмента. Например, теодолит Т30 предназначен для измерения углов с погрешностью 30” и т.д.

К основным узлам оптических теодолитов относятся: ориентирующее устройство (зрительная труба), угловые рабочие меры (горизонтальный и вертикальный лимбы), осевая система, отсчетные устройства.

Подставка (трегер) с подъемными винтами предназначена для крепления теодолита к штативу, его центрирования и горизонтирования. Центрирование может проводиться с помощью отвеса или оптического центрира. Верхняя часть теодолита называется алидадой.

Она свободно вращается относительно подставки.

Зрительная труба предназначена для наведения теодолита на отдаленные цели. Она имеет объектив и окуляр с встроенной сеткой нитей.

Лимбы в теодолитах располагают в двух взаимно перпендикулярных плоскостях: горизонтальный и вертикальный круг. Лимбы выполняются в виде стеклянных круговых пластин с выгравированными штрихами градусной меры от 0 до 360.

Счетная система представляет собой систему призм, с помощью которой в поле зрения отсчетного микроскопа выводятся градусные фрагменты лимбов в соответствии с текущей ориентацией зрительной трубы.

Осевая система теодолита включает вертикальную ось (ось вращения алидады), ось вращения зрительной трубы и ось визирования.

При установке теодолита в рабочее положение горизонтальную линию задает ось уровня горизонтального круга – цилиндрический уровень. Поверка цилиндрического уровня – горизонтирование инструмента. Порядок выполнения. 2с.

Измерение горизонтальных углов – углов, лежащих в плоскости горизонта с вершиной в точке измерения между направлениями на местности из этой точки на две другие. Условия для измерений выбирают оптимальные, исключают рефракцию, плохую видимость. Полуприем, полный прием. Контроль 2с. Два значения угла. При допустимых 2с берут среднее как наиболее точное.

Полигонометрия заключается в разбивке полигонов на местности и прокладывании теодолитных ходов по точкам полигонов. Теодолитные ходы бывают трех видов.

Замкнутый ход начинается и заканчивается в твердой точке.

Разомкнутый прокладывается между двумя твердыми точками.

Висячий ход в случае необходимости продолжают от некоторых точек теодолитного хода для определения координат точек, находящихся в стороне от основного хода. Вследствие бесконтрольности не делают большой протяженности (300-400 м).

Предельная длина теодолитного хода зависит от точности определения координат и масштаба составляемой карты. 1 : 2 000 – периметр 2-3 км, 1 : 25 000 – 10-15 км.

  • Схема теодолитного хода
  • Определить координаты на местности. Определение координат точек местности (объектов)
  • ∑βт = 180° * (n-2)
  • ∑β = β1 + β2 + …+ βn
  • Угловая невязка fβ = ∑β – ∑βт
  • Допустимая угловая невязка fβдоп = 2m√n , где m – точность прибора, n – число углов хода
  • Измерения в теодолитном ходе
  • Определить координаты на местности. Определение координат точек местности (объектов)
  • A1 = AТВ +180° + βпр           An+1 = An +180° – βn+1
  • ∆X = S * cos A   ∆Y = S * sin A
  • Ведомость вычисления координат точек теодолитного хода
  • Определить координаты на местности. Определение координат точек местности (объектов)
  • Измерения длин линий на местности
  • В порядке убывания точности:
  • Лазерные и светодальномеры
  • Инварная проволока
  • Землемерные ленты и рулетки
  • Косвенные измерения (определение неприступного расстояния)
  • Оптические дальномеры: с постоянным базисом; с постоянным углом (нитяной)

Определение неприступного расстояния

Определить координаты на местности. Определение координат точек местности (объектов)

Дальномер с постоянным базисом (параллактический способ) основан на измерении параллактического угла.

Используют 2-метровую базисную рейку с марками на ее концах, установленную на штативе в конечной точке измеряемой линии перпендикулярно ее створу.

Теодолит ставят в исходной точке и измеряют параллактический угол между направлениями на марки. Расстояние получают по формуле S=ctg (β1+β2)/2. Точность измерения – 1/700.

  1. Дальномер с постоянным углом, который зафиксирован специальными штрихами (нитями) в поле зрения объектива геодезического инструмента, называется нитяным.
  2. Определить координаты на местности. Определение координат точек местности (объектов)
  3. (y – x)[мм] * 100 = S[мм] , 100 – коэффициент дальномера

Каждый сантиметр, отсчитанный по рейке, равен 1 метру расстояния. Точность нитяного дальномера не превышает 10 см, а практически составляет  1 : 500 от длины линии.

Светодальномеры.

Принцип действия основан на определении скорости прохождения светового луча вдоль линии. На одном конце устанавливается прибор, включающий излучатель и приемник световой энергии, на другом конце – отражатель.

Световой луч проходит двойной путь. Поэтому расстояние вычисляют по формуле S=vt / 2, v – скорость света в данной среде.

Обычно принимают v = c/n, где с – скорость света в вакууме, n – показатель преломления среды, в которой распространяется энергия.

Сущность заключается в определении времени прохождения сигнала. Есть 2 метода: импульсный и фазовый.

В геодезии импульсный метод не применяют из-за низкой точности, чаще для локации движущихся объектов.

Фазовый метод основан на определении разности фаз световых волн, посланных излучателем и принятых приемником. Расстояние может быть измерено по числу волн (целое число и домер, дробная часть волны).

Точность топографических светодальномеров составляет несколько мм, максимально измеряемое расстояние 15 км.

Дальнейшим развитием стало появления лазерных дальномеров, функционирующих по аналогичному принципу.

9. Определение координат точек по карте

Местоположение интересующих нас точек на карте обычно определяют с помощью координат.

При определении координат точек местности по карте применяют географические, плоские прямоугольные и полярные координаты.

Географические координаты (рис. 21) представляют собой угловые величины (широту и долготу), которые определяют положение точки на земной поверхности относительно экватора и меридиана, принятого за начальный.

Определить координаты на местности. Определение координат точек местности (объектов)

Географическая широта — это угол, образованный плоскостью экватора и отвесной линией в данной точке земной поверхности. В зависимости от расположения точки относительно экватора географическая широта может быть северной или южной. Очевидно, что широта точки, расположенной на экваторе, равна 0°, а на полюсах — 90°.

Географическая долгота — это угол, образованный плоскостью начального меридиана и плоскостью меридиана, проходящего через данную точку.

Для единообразия в определении долготы точек за начальный меридиан принято считать Гринвичский меридиан. В зависимости от расположения точки относительно начального меридиана до меридиана 180° она имеет восточную или западную долготу.

Линии, соединяющие одинаковые по широте точки земной поверхности, называют параллелями. Линии, соединяющие одинаковые по долготе точки земной поверхности, называют меридианами. Меридианы и параллели являются рамками листов топографических карт.

Географические координаты на карте определяют по рамкам листа (рис. 22), подписанным в углах, и залитым штрихам (минутным делениям).

Например, на нашем рисунке западная рамка листа карты (меридиан) имеет долготу 14° 00′, южная рамка (параллель) имеет широту 54°15′.

Географические координаты даются через одну минуту на рамках карт масштабом от 1:10 000 до 1 : 200 000 и через 5 минут на рамках карт масштабом 1 : 500 000 и 1 : 1 000 000.

Определить координаты на местности. Определение координат точек местности (объектов)

1 Меридиан, проходящий через астрономическую обсерваторию Е Гринвиче (около Лондона).

2 С 1960 г. на рамках карт масштабов от 1 : 25 000 до 1 : 100 000 минутное деление дополнительно разбито на шесть равных частей по 10″.

Для определения географических координат точки на карте (например, точки Б на рис. 22) необходимо провести меридиан и параллель через концы ближайших к точке одноминутных делений рамки.

В нашем примере проведенный меридиан имеет долготу 14° 01′, а проведенная параллель имеет широту 54° 16′. Затем оценивают на глаз или измеряют доли минуты по долготе и широте до интересующей нас точки и добавляют их к основным отсчетам.

В результате широта точки Б равна 54° 16′, 3, долгота — 14° 01’, 4.

Географическими координатами обычно пользуются при определении положения точек, удаленных одна от другой на значительные расстояния.

Под плоскими прямоугольными координатами понимают линейные величины, характеризующие относительное положение точки на плоскости. Поясним сущность их на рис. 23.

Определить координаты на местности. Определение координат точек местности (объектов)

Пусть на плоскости проведены две взаимно перпендикулярные линии, одна из которых проходит в вертикальном, а вторая (У) в горизонтальном направлении. Назовем эти линии осями координат, а точку их пересечения О — началом координат.

Тогда положение любой точки на плоскости в данной системе координат относительно начала координат будет определяться кратчайшими расстояниями до нее от осей координат. Эти расстояния в виде прямых линий, перпендикулярных к одной из координатных осей и параллельных другой, являются координатами точек (х и у). Ось Х-ов принято также называть осью абцисс, а ось У-ов — осыо ординат.

Из рис. 23 видно, что в зависимости от положения точки по отношению к осям координат ее абсцисса и ордината могут иметь положительные и отрицательные значения.

Поскольку земную поверхность, имеющую шарообразную форму, нельзя изобразить па плоскости без разрыва и искажений, ее условно разделили на 60 равных частей, ограниченных меридианами через 6° по долготе.

’ Счет их ведут от Гринвичского меридиана, который является западным для первой зоны.

Эти части называют координатными зонами, для каждой из которых в любом масштабе изготовляют свои отдельные карты, состоящие из многих листов.

В каждой такой зоне осями координат являются: осью ординат, то есть осью У-ов — экватор, осыо абцисс, то есть осью Х-ов — осевой меридиан зоны.

Пересечение осевого меридиана с экватором принято за начало координат. Таким образом, каждая зона имеет свои собственные оси и начало координат, то есть свою отдельную систему координат.

Эта система называется системой плоских прямоугольных координат.

Система плоских прямоугольных координат в каждой зоне имеет вполне определенное географическое положение, поэтому она непосредственно связана с системой географических координат и с системами прямоугольных координат всех остальных зон.

Для простоты определения координат на плоскость (карту) наносят сетку квадратов, линии которой параллельны осям координат. Такую сетку принято называть координатной сеткой.

Если на каждую координатную зону отдельно нанести координатную сетку со сторонами квадратов в масштабе карты, то такая сетка будет являться графическим выражением плоской прямоугольной системы координат.

Счет координат х ведется от экватора к полюсам. Значения координат х к северу от экватора положительные, а к югу — отрицательные.

Счет координат у ведется от осевого меридиана. Значения координат у к востоку осевого меридиана имеют знак плюс, к западу — знак минус.

Очевидно, что для территории СССР, расположенной в северном полушарии, значения всех координат х будут положительными, а значения координат у могут быть как положительными, так и отрицательными, в зависимости от расположения точки по отношению к осевому меридиану зоны.

Для удобства пользования координатами, чтобы иметь только один положительный знак, ордината точки пересечения осевого меридиана зоны и экватора в СССР принята равной 500 км, а не нулю. В связи с этим все координаты у, идущие на восток от осевого меридиана, будут больше 500 км, а идущие на запад — меньше 500 км.

На листах топографических карт, как отмечалось выше, нанесена километровая или координатная сетка. Около каждой линии записаны их координаты (рис. 22). Так, надпись 6015 означает, что все точки, расположенные на горизонтальной линии (линии У-ов), находятся от экватора на расстоянии 6015 км.

Надпись 3435 у вертикальной линии (линии Х-ов) показывает: 3 — номер зоны, а 435 — ординату линии в километрах, расположенную на западе от осевого меридиана зоны на 65 км (500 км — 435 км = 65 км).

Если бы данная вертикальная линия обозначалась трехзначной цифрой больше 500, то это означало бы, что линия находится на востоке от осевого меридиана.

Последующие линии километровой сетки обозначены лишь двузначными числами, чтобы не было повторений.

Найдем в прямоугольных координатах положение точки, обозначенной на карте отметкой 151,8. Для этого надо измерить по перпендикулярам расстояние от этой Отметки до горизонтальной и вертикальной линий и полученные значения сложить с координатами линий.

Расстояния можно измерять с помощью измерителя или линейки, а также с помощью координатной мерки или координатомера.

При определении координат точки используется координатная мерка или координатомер того масштаба карты, по которой определяется местоположение этой точки.

Определить координаты на местности. Определение координат точек местности (объектов)

Определить координаты на местности. Определение координат точек местности (объектов)

Для определения координат точек по карте лучше всего пользоваться измерителем и поперечным масштабом.

Для определения положения точек, кроме прямоугольных координат, широко применяют так называемые полярные координаты, особенно при ориентировании и целеуказании. Сущность полярных координат заключается в том, что положение точки характеризуется углом от какого-то направления, принятого за начальное, и дальностью от исходной точки до определяемой.

Вертикальные линии километровой сетки, как известно, в каждой координатной зоне параллельны своему осевому меридиану. Поэтому при склейке смежных листов двух соседних зон их километровые линии, располагаясь под углом одна к другой, не совпадают.

Как же быть в этом случае при определении координат точек карты с помощью километровой сетки?

На всех листах карт, располагающихся на к востоку от западной границы каждой зоны, сделаны метки (между внешней и минутной рамками), которые обозначают продолжение линий координатной сетки соседней западной зоны. Эти метки оцифрованы в соответствии с нумерацией километровых линий соседней зоны. Оцифровка помещается за внешней рамкой листа.

Когда приходится использовать листы карты на стыке двух зон, а требуется работать в единой системе координат, прежде всего необходимо решить (если это не указано старшим начальником), какую координатную зону следует применять.

В соответствии с этим на том листе карты, на котором имеются штрихи километровой сетки соседней зоны, нужно соединить эти штрихи друг с другом остро отточенным карандашом, построив таким образом километровую сетку западной зоны. В последующем на этом листе карты при определении координат точек пользуются лишь прочерченной координатной сеткой.

А когда район работ с картой переместится от стыка зон, переходят к работе в той зоне, в которой предстоит действовать дальше.

Связанные статьи:
1. Что такое местность?
2. Назначение и содержание топографических карт
3. Классификация топографических карт
4. Подготовка карты к работе
5. Измерительные приемы, применяемые при работе с картой
6.

Топографическое ориентирование по карте
7. Изучение местности по карте
8. Оценка маршрута движения, выбранного или назначенного по карте
9. Определение координат точек по карте
10. Целеуказание по карте
11. Топографическая привязка с помощью карты
12.

Хранение и сбережение карт

Как определить прямоугольные координаты на топографической карте

Координаты являются методом обозначения точки на карте. В картографии используются различные координаты: плоские, прямоугольные, угловые, биполярные и полярные. В целях обозначения объектов недвижимого имущества на топографических картах применяются прямоугольные координаты. Ведь определение прямоугольных координат на топографических картах гораздо проще и точнее.

Понятие прямоугольных координат

Определить координаты на местности. Определение координат точек местности (объектов)

Прямоугольные координаты представлены в виде точек пересечения предполагаемых линий по данным взаимно перпендикулярных осей на плоской поверхности. Обычно данные оси на плоскости условно обозначаются латинскими буквами x (абсцисса), y (ордината). Предполагаемые линии, пересечение которых является точкой местоположения, определяются по целым и дробным числовым показателям на указанных осях.

В классической науке такая система носит название декартовая система. Однако классическая система Декарта и применяемая в целях топографического обозначения объектов на карте несколько различаются между собой. Так, в системе расположение осей повернуто на 90 градусов по углу. Названа такая система в честь основателя – Гаусса.

Система Гаусса используется для разделения всей территории Земли на отдельные зоны. Внутри каждой из зон координат идёт обозначение своих числовых выражений предполагаемых линий определения точек. Важным моментом является установление точки отсчёта внутри зоны.

Обычно в качестве такой точки выступает место пересечения срединного меридиана в полосе с экватором планеты. Данная точка не имеет материальной величины, так что обозначается она в качестве нулевой отметки, а её значение всегда равно нулю.

В целом такая система имеет вид сетки с бесконечным количеством числовых значений. Там могут отображаться две группы числовых значений:

  1. Значения со знаком минус – для обозначения объектов, находящихся южнее и к западу нулевой отметки.
  2. Положительные числовые значения – для указания мест расположения точек восточнее и севернее центральной точки системы координат.

Однако это не полная характеристика значений, указываемых в прямоугольных координатах точек на топографических картах. К примеру, при обозначении точек расположения на топографических картах отрицательные значение не используются.

Координатные зоны по системе Гаусса по всей земной поверхности пронумерованы. При обозначении точек на отдельных зонах помимо координат внутри самой зоны указывается номер, который приурочен к указанному квадрату по системе Гаусса.

Данный номер указывается перед отрицательными значениями координат на оси ординат. На оси абсцисс номер зоны не указывается. Указание номера означает смещение нулевой отметки на 500 км в левую сторону. Это сделано, чтобы исключить наличие значений со знаком минус на карте.

Значения обозначаются в километрах и равны они промежутку от нулевой отметки на оси до соответствующего места на карте.

Значение при этом указывается двояко:

  1. Полные координаты – указывается промежуток с точностью до метра.
  2. Сокращённые координаты – обозначаются лишь километры до десятков и метры.

Однако в основном используются полные координаты, так как точное указание местоположения точки имеет большое значение в топографических целях. Сокращённые координаты допускается использовать лишь в случае, когда топографическая карта охватывает не более 10 тысяч квадратных километров, т. е. реальные длины осей не превышают ста километров.

При обозначении отрицательного значения на оси У указывается сначала ось, потом номер зоны по системе Гаусса и в конце промежуток от нулевой отметки до объекта на карте. Примерно, прямоугольные координаты точки на топографической карте выглядят следующим образом: х = 5 650 450; у = 3 620 840.

В подобном случае значение по оси Х толкуется прямо, а для установления отдалённости точки по ординате от нулевой отметки из указанного значения вычитается 500 километров. А это значит, что точка в указанном примере находится в 5 650 километрах и 450 метрах от экватора и 120 километрах и 840 метрах от срединного меридиана.

Определение точек на карте по координатной сетке

Определить координаты на местности. Определение координат точек местности (объектов)

Координатную сеть иначе ещё называют километровой, так как на мелких картах величина квадратов сетки равняется километру. На подобных картах километровая сеть изображается в виде линий, прочерченных параллельно осями и имеющих определённый интервал между собой. Интервал устанавливается в зависимости от масштаба.

Так, при масштабе 1 : 25 000 значение интервала равняется 4 сантиметрам. При большем масштабе интервал не бывает меньше 2 сантиметров, невзирая на реальное расстояние между линиями. При масштабе больше чем 1 : 500 000 сетка прямо не изображается. Обозначаются лишь выходные метки по краям карты.

Координатная сеть является условной для отдельной зоны, и для сопоставления топографии соседних зон по краям карты оставляются отметки сетки, которые соответствуют выходам сетки соседней зоны.

При обозначении значений координат на топографических картах координатная сеть позволяет быстрее обозначить необходимую точку. Отсчет расстояния идёт от границ квадрата координатной сетки. Каждая из сторон отдельного квадрата сетки имеет заранее определенную реальную длину в километрах (1, 2 и т. д. километров).

Чтобы осуществить определение координат  точек на картах, очень важно иметь ориентиры. Если изначальное координаты ясны и нужно лишь указать их на карте, то делается это следующим образом:

  1. Определяется квадрат на сетке по километру координат.
  2. При помощи линейки отсчитываются метровые величины внутри квадрата, сначала по параллельной линии к оси абсцисс, затем к оси ординат.
  3. Вдоль линий указываются метровые значения.

В целом процедура завершена. Однако на практике не всё так просто. Зачастую не имеется значения изначальных координат. В таких случаях важно иметь определенные ориентиры, без которых найти точку представляется невозможным. В качестве ориентира может послужить любая близлежащая точка с известными координатами. Достаточно выяснить реальное расстояние между известной точкой и искомым объектом.

Указать адрес точки на карте на 100 % точно невозможно, так что определяются примерные значения.

Определить координаты на местности. Определение координат точек местности (объектов)

С другой стороны, современные технологии позволяют произвести точные измерения на месте с моментальным отображением результатов на электронной топографической карте. Для этого применяются методы лазерного измерения или радиолокации. В любом случае при практической необходимости выяснения местоположения того или иного объекта недвижимости правильным решением будет обратиться к специалистам.

В качестве специалистов могут выступать:

  • инженеры государственной службы геодезии и картографии (кадастр);
  • специалисты частных инженерных служб.

При этом частные инженерные службы в своём распоряжении имеют более высокотехнологичное, а значит и более точное оборудование, нежели государственные органы. Разумеется, услуги таких специалистов стоят не дёшево.

Соотношение прямоугольных координат с другими системами обозначения точек на карте

Помимо непосредственного использования прямоугольной системы или системы Гаусса часто возникает необходимость сопоставления данных в указанной системе и на обычной географической карте. В таких случаях используется несколько методов:

  1. Метод перевода значения из числового значения в стандартные значения (широты и долготы).
  2. Способ наложения значения расстояний по масштабу.
  3. Метод сопоставления географической карты с целой зоны Гаусса.

Практическое применение находит лишь первый метод, так как он признан официальным способом переложения координат объектов недвижимости из обычной топографической карты в географическую. Именно данный способ используют государственные службы и частные специалисты.

С другой стороны, это один из самых сложных способов, требующий специальных навыков и знаний. Кроме того необходимо наличие сведений о ключевых топографических точках.

Самым простым способом признаётся метод наложения расстояния. По сути, зная масштаб, вычислить координаты может даже школьник при помощи обычной линейки. Однако погрешность в таком случае может быть равна десяткам километров.

Определить координаты на местности. Определение координат точек местности (объектов)

Метод сопоставления карт применяется крайне редко. К примеру, такой способ может быть использован при корректировке генерального плана расширения населённых пунктов, определения границ регионов и государств.

Но данные методы позволяют не только решить частные проблемы, но и узнать координаты искомого объекта недвижимости. Такое стало возможным после предоставления открытого доступа к картам GPS. Постоянное спутниковое наблюдение за поверхностью земли позволило с точностью до метра определить местоположение практически любого объекта, не оснащенного радиопоглощающим покрытием.

Выяснить местоположение путем сопоставления данных с GPS и топографической карты может практически любой человек. Для этого необходимо:

  • получить данные географических координат из системы GPS, выраженные в широте и долготе;
  • по ним вычислить зону Гаусса (срединный меридиан в зоне);
  • переложить точку соответственно зоне Гаусса.

Разумеется, задача не простая, но зато выполнимая. Другой вопрос – официальный статус такого вычисления.

Официальный статус определённых прямоугольных координат объектов недвижимости

Выявленные частным образом координаты никогда не будут иметь официального статуса. Ведь в целях топографии законодательством установлены специальные ГОСТы определения местоположения объектов недвижимости. Но при желании одним из вышеуказанных способов можно проверить соответствие официальных данных по тому или иному объекту недвижимости.

Очень редко, но всё же встречаются случаи, когда официальные данные в службе геодезистов не совсем точны. Никакого практического значения в повседневной жизни данный фактор может и не иметь. Однако он важен при определении так называемых «красных линий» на топографических картах. Это линии, по которым будут пролегать дороги и инженерные линии, и которые будут в будущем реквизированы.

Если по топографической карте данные объекта недвижимости указаны неверно, то его владелец может оказаться жертвой ошибочной реквизиции. Чтобы такого не случилось, при выявлении несоответствий фактических и официальных топографических координат необходимо сообщить об этом в уполномоченный орган (кадастр).

Если в удовлетворении ходатайства о проведении проверки и внесении изменений служба откажет, то можно добиться своего через суд. В таком случае будет назначена отдельная экспертиза с привлечением сторонних специалистов. В целом, процедура расходная и отнимает много времени, но рано или поздно владелец недвижимости может с таким столкнуться.

Определение координат точек местности (объектов) и целеуказание по карте

Координатами называются угловые или линейные величины, определяющие положение точки на какой-либо поверхности или в пространстве. При определении положения точек местности (целей) по карте применяются географические и плоские прямоугольные координаты.

Определение географических координат и нанесение на карту объектов по заданным координатам

Географические координаты — угловые величины (широта и долгота), определяющие положение объектов на земной поверхности и на карте относительно экватора и меридиана, принятого за начальный. Их подразделяют на астрономические, полученные из астрономических наблюдений, и геодезические, полученные из геодезических измерений на земной поверхности.

Астрономические координаты определяют положение точек земной поверхности на поверхности геоида, куда они проектируются отвесными линиями; геодезические координаты определяют положение точек на поверхности земного эллипсоида, куда они проектируются нормалями к этой поверхности.

Расхождения между астрономическими и геодезическими координатами обусловлены уклонением отвесной линии от нормали к поверхности земного эллипсоида. Для большей части территории земного шара они не превышают 3-4″ или в линейной мере 100 м. Максимальное уклонение отвесной линии достигает 40″.

На топографических картах применяются геодезические координаты. На практике при работе с картами их обычно называют географическими.

  • Географические координаты какой-либо точки: М 
  • — это ее широта   В =
  • — и долгота        L =.

Географическая широта — это угол, образованный плоскостью экватора и отвесной линией в данной точке земной поверхности. Величина угла показывает, насколько та или иная точка на земном шаре севернее или южнее экватора. Если точка расположена в Северном полушарии, то ее широта называется северной, а если в Южном полушарии южной

Долгота точки — это угол, образованный плоскостью начального меридиана и плоскостью меридиана, проходящего через данную точку.

За начальный принят меридиан, проходящий через астрономическую обсерваторию в Гринвиче (близ Лондона).

Все точки на земном шаре, расположенные к востоку от начального (Гринвичского) меридиана до меридиана 180 5о 0, имеют восточную, а к западу — западную долготу.

Географическая (картографическая, градусная) сетка — изображение на карте линий параллелей и меридианов; используется для определения географических (геодезических) координат точек (объектов) и целеуказания. На топографических картах линии параллелей и меридианов являются внутренними рамками листов; их широта и долгота подписываются на углах каждого листа.

Для определения по карте географических координат точек местности на каждом ее листе наносится дополнительная рамка с делениями через одну минуту. Каждое минутное деление разбито точками на шесть равных отрезков через 10″.

Чтобы определить географические координаты какой-либо точки, (например точки А) надо вначале на глаз определить ее положение относительно минутных и секундных делений по широте и долготе.

Затем соединить ближайшие к точке А одноименные деления прямыми линиями по параллели (западная и восточная стороны рамки) и по меридиану (северная и южная стороны рамки карты). При этом проведенная параллель должна пройти южнее точки А, а меридиан — западнее.

После этого определить на глаз, каким частям десяти-секундных делений по широте и долготе соответствуют расстояния от проведенных параллели и меридиана до точки А. Определив величины этих отрезков в секундах и приплюсовав их к значениям координат проведенных параллели и меридиана, получим географические координаты точки А.

Для нанесения на карту точки по заданным географическим координатам, например точки С, имеющей широту и долготу, поступают следующим образом.

На боковых сторонах минутной рамки от параллели (южной стороны рамки листа карты) отсчитывают по с юга на север и через полученные точки проводят прямую линию (параллель).

Затем  на северной и южной сторонах минутной рамки от меридиана (западной рамки листа карты) с долготой отсчитывают на восток по и через полученные точки проводят другую прямую линию (меридиан с долготой). В пересечении проведенных линий и будет находиться точка с заданными координатами.

Рассмотреть практически на примере. (2 — 3 точки — определить координаты, 2 — 3 точки нанести по заданным координатам).

Географическими координатами пользуются обычно при определении взаимного положения точек, удаленных друг от друга на весьма большие расстояния. Командиры подразделений чаще всего имеют дело с плоскими прямоугольными координатами.

(1

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

SQL - 62 | 0,266 сек. | 14.65 МБ